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Non-linear oscillations of fluid in a container 
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This paper is concerned with forced oscillations of fluid in a rectangular container. 
From the linearized approximation of the equations governing these oscillations, 
resonance frequencies are obtained for which the amplitude of the oscillations 
becomes idki te .  Observation shows that under these circumstances a hydraulic 
jump is formed, which travels periodically back and forth between the walls of 
the container. This hydraulic jump is a non-linear phenomenon, analogous to 
the shock wave appearing in one-dimensional gas flow under similar resonance 
conditions. 

A theory developed by previous authors for one-dimensional gas flow is applied 
to the fluid oscillations in order to calculate the strength and the phase of the 
jump. The moment exerted on the container is also calculated. These quantities 
were measured experimentally at the lowest resonance frequency and the results 
are in good agreement with the theoretical values. 

1. Introduction 
When a rectangular vessel containing fluid is oscillated at  small amplitudes 

about a fixed axis (figure l), gravity waves appear on the surface of the fluid. 
If the width B of the container is large with respect to the depth ho of the fluid, 
the wave height q might be described by the ‘linear shallow-water theory’. 
In  Q 2 it will be shown that according to this theory the amplitude of the surface 
elevation is proportional to (cos ( m ~ / 2 w ~ ) } - ~ ,  where w is the angular frequency of 
the excitation and 

(1) wo = (n/W (gho)*. 

Hence the linear theory predicts an infinite amplitude at w = wo. The present 
paper is concerned with the frequency range where w is near wo. 

Experiments carried out with w M wo showed the occurrence of a hydraulic 
jump which travelled back and forth between the walls of the container. Ob- 
viously the linear theory is invalid in this frequency range and a description must 
start from the non-linear shallow-water theory. 

The present situation appears to be analogous to that occurring when a 
column of gas is oscillated at a resonance frequency, in which case a shock wave 
is formed in the gas. This problem has received attention recently in the work of 
Betchov (1958), Chu & Ying (1963) and Chester (1964). The most rigorous ac- 
count of the travelling shock wave appearing in the gas was given by Chu 
& Ying, who used a perturbation method due to Lin (1954). In  the present paper 
the Chu-Ying-Lin method is applied to fluid oscillations under resonance 
conditions. 

47 Fluid Mech. 22 



738 J .  H .  C. Verhagen and L. van Wijngaarden 

Following a formulation of the problem in $2, the theory is discussed in $3 
and results pertaining to the hydraulic jump are given in $4. Experimental 
results are presented in $ 5 together with the theoretical results. 
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FIOURE 1. Fluid oscillating in a container. 

2. Theoretical analysis 
Consider an open rectangular container of width B, filled with fluid to a level 

h,, (see figure 1). Let one pair of the side walls be parallel to the ( X ,  Y)-plane, 
where gravity acts in the negative Y-direction. Let the other side walls be located 
at  x = +_ 423. The container is oscillated about the Z-axis at  small amplitudes 6. 

We assume that the width of the container in the Z-direction is large enough 
for the flow to be two-dimensional. We denote the undisturbed fluid surface by 
y = H ,  the surface elevation with respect t o  this level by 7, and the angular dis- 
placement about 0 by 6 sin wt, a counter-clockwise rotation being considered 
positive. Then the bottom is described by 

y = H-ho+6xsinot, 

y = H + 7. and the surface of the fluid by 

It is convenient to consider the surface level relative to the bottom of the con- 
tainer. Therefore we introduce 

h = h,+q-Sxsinwt. (4) 

If ho/B < 1, the motion of the fluid caused by the oscillation of the container 
can be described by the ‘shallow-water theory’ (Wehausen & Laitone 1960, 
$30, Stoker 1957, ch. 2). In this theory the continuity equation is 

ah ah au 
-+u--+h- = 0, at ax ax ( 5 )  
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where u denotes the velocity in the x-direction, and the momentum equation is 

au au ah 
at ax ax -+u-++-++&sinwt = 0. 

In  this formulation the pressure distribution in the vertical direction is assumed 
to be hydrostatic. Therefore, the acceleration in the Y-direction, introduced by 
the excitation, must be small with respect to the acceleration due to gravity; 
i.e. 8Bw2/g 4 1. The boundary conditions for u are determined by the velocity 
produced in the horizontal direction by the exciting oscillation. In  the shallow- 
water approximation u does not vary between the bottom and the surface. Taking 
the value at the surface, we require that 

u = -8Hwcoswt at x = &&B. (7) 
We seek a solution of equations (5)-(7) in which u and h vary periodically. 

For small enough 8, one expects the linearized form of ( 5 )  and ( 6 )  to be valid, i.e. 

ah au 
O ax 

- - = 0, 

au ah 
at ax 
-++-++&sinwt = 0. 

The solution of these equations for A, satisfying (7), is 

nw2 
sin wt sin -- , 8Bwo 1+Hw2/g 

A = h0-- 
7rw cos (nw/2w0) Bw0 

where wo is defined by (1). 
However, for w -+ wo, equation (8) gives A -+ 00. Experiments described in 

$5 showed the appearance of a hydraulic jump or bore for w x a,. Obviously, 
the linearized equations do not hold under these circumstances and a description 
therefore has to start from equations ( 5 )  and ( 6 ) .  The situation is analogous to 
that in gas dynamics when a column of gas is oscillated at small amplitude, 
e.g. by a piston (see figure 2) .  

In  terms of the density p and velocity u, the acoustic approximation is 

where the undisturbed quantities are indicated with the subscript 0, and a is the 
velocity of sound in the gas. If u = 0 at the closed end x = L, and at the piston 
u = kw COB wt, the solution to the above equations is 

sin{w(L-x)/a} 
sin (wL/a) 

u = kw cos wt (9) 

Resonance occurs when wL/u is a multiple of m. Then a shock wave is generated 
in the gas, which travels periodically to and fro through the column, similar to  
the hydraulic jump described in this paper. Indeed it is well known that the 
equations of shallow-water theory are equivalent to the equations of one-dimen- 
sional gas dynamics. 

47-2 
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The problem of resonance oscillations in a gas column was treated by Betchov 
(1958), Chester (1964) and Chu & Ying (1963), starting from the assumption 
that the excitation amplitudes were sufficiently small to permit a linearized 
solution of type (9) for conditions far from resonance. All these authors succeeded 
in obtaining approximate solutions at resonance, including the case of shock 
waves travelling periodically up and down through the gas. 

Betchov (1958) and Chester (1964) derived such a solution by both physical 
and mathematical arguments and also discussed the influence of viscosity. 

Chu & Ying used a method of characteristics perturbation developed by Lin 
(1954), which, if properly adapted, appears to be applicable to the hydraulic- 
jump problem. We shall give a brief outline of the method, referring for details 
to the work of Chu & Ying, henceforth denoted by C.Y. 

FIGURE 2. Gas-dynamic analogy: oscillations of a gm c o l m  
excited by a piston. 

3. The Chu-Ying-Lin method as applied to the hydraulic jump 
problem 

We introduce c = (g&4 (10) 

co = (gh0)4 (11) 

and €2 = gs/woco, 

or in view of ( l ) ,  € = (B6/7rho)k (12) 

Further, we allow for a shift in time by introducing an additional phase # in 
the motion of the bottom of the container. Using (lo)-( 12), we obtain from ( 5 )  and 

g+(u+c)- u+2c-%~c0c0s(wt--cp) = 0, (" ax 0 I 
( i+(u -c ) -  u-2c--€2cooos(wt-#) = 0. 

8X w I 
(13) 

We define the characteristic co-ordinates a and 1 such that along the - 
C+-characteristics given by 

ax at _ -  - (u+c)-  
aa a02 

/3 is constant, and along the C--characteristics given by 
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a is constant. Then it follows from (13) and (14) that along C+ 

and along C- 

I 
aa " (  " I 
- u + Z C - - €  "0 2 cocos(wt-$) = 0, 

- u-2c-W--O€~cocos("t-$) = 0. 

aa a (  " 

Note that the Riemann invariants, i.e. the expressions (>  in (17) and (18), 
assume a simple form involving only u and c, owing to the fact that the bottom 
slope does not depend on x. A periodic solution of equations (15)-( 18), involving 
hydraulic jumps and satisfying the boundary condition (7) has to be found. 
A possible approach to the problem might be to start from the undisturbed 
conditions and to construct the development of the flow by the method of charac- 
teristics. This development would lead to the formation of a hydraulic jump. 
Using the methods given in Courant & Friedrichs (1948) for the gas-dynamic 
case, the procedure might be continued till a quasi-stationary situation is reached, 
in which a jump travels periodically to and fro. Such an approach would be 
conceivable with the aid of a computer. 

Another approach is to start from the concept of the quasi-stationary situation 
(mentioned above) and to attempt an analytical construction of such a solution. 

Consider the (x, t)-plane (figure 3). The paths of the jumps are represented by 
PQ, QR, RS and so on, and the aforementioned solution has to  satisfy equations 
(15)-(18) in the different regions I, 11,111, etc. The solutions for these regions, 
which have different energies, must be related to each other by the jump con- 
ditions, which require the conservation of mass and momentum across the 
hydraulic jump. (An important difference occurs with shock waves, because 
across a shock wave energy is preserved.) From consideration of the periodicity 
it follows that the flow in region I must be repeated in region 111, and so on. 
The difficulty is that the paths of the jumps are not known at the outset. We 
know that for 6 -+ 0, these paths cannot be far from dx/dt = L- co. The deviations 
of the jumps from these directions are most conveniently expressed as perturba- 
tions in terms of the characteristic co-ordinates (Lin 1954), the appropriate 
perturbation parameter E being defined by (12). For, if the difference in level 
across the jump is AA, then the rate of loss of energy is given by? 

while the work W done by the external forces is 
W M AAB26wpg. 

Equating these expressions yields 

The strength of the jump is thus of order E. 

AA/ho M (6B/ho)4 M E. 

u = eul(a, p) + e2u2(u, fi)  +. . . , 
c = co + €C&, p) + E2C2(U, p) +. . . , 
x = XI&, p) + Ex&, p) +s2x,(a, p) + . . . , 
t = to@, p) + Etl(a, p) + €%,(a, p) +. . . . 

(19) 

(20) 
(21) 
(22) 
(23) 

We now write 

t In C.Y. a similar argument is given for the gm-dynamic c w .  
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In  the course of the analysis the period of the jump, i.e. the time needed by the 
jump to travel once back and forth in the container, is also expanded in a series. 
For this reason the associated frequency w is written as 

w =w,+ew, +.... 
In  C.Y. this step is postponed till the last stage of the analysis after results have 
been obtained from equations with terms of order 8 in which w is treated as a 
constant. This inconsistency leads to an incorrect result for 4. 

- ;B 0 X ;B 

 FIG^ 3. Paths of hydraulic jumps in (2, +plane. 

Substituting these expressions into the characteristic equations 
and collecting terms of like order in 6, we obtain 

axo at, axo at,. 
aa 'O--' aa -= ap €0:  - = --CO@? 

8% ac, a ~ ,  ac, - = -2- -= 2- 
aa aa' ap ag' 
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ass 
aU2 ac2 a - aa = - 2 a , + c  O -{COs(WotO-$)}, aa 

l au, ac2 a 
aas aas as - = 2 - + co a {cos ((dot, - $)}. 

To solve these equations in region I (figure 3), we have fist to formulate the con- 
ditions at the boundaries of this region in terms of a and B. 

In  defining a and /3 we follow C.Y. The C--characteristics (a = const.) are 
defined by the value of x at the intersection with the hydraulic jump PQ. P& is 
thus determined by a = x. The C+-characteristics (as = const.) are defined in the 
following manner: through each point of the wall PR passes a C+-characteristic. 
The value of /3 along this characteristic is equal to the value of a along the 
C--characteristic through the same point of PR. By this definition of the 
Cf-lines, the wall PR is described by a = as. 

Along a = /3 we have two conditions 

u = -H~8cos(wt-$), (27) 
and x = -4B. (28) 

/3 = -4B+e/4u,(a)+e2p2(a)+ ..., (29) 

The hydraulic jump P& tends to 

where pl( - ils) = p,( - B4) = 0, since at  P, /3 = a = - $B. Along (29) we have 
the condition x = a. 

The second condition that is needed is provided by stipulating that along 

= - 4B as e + 0. Therefore, along PQ, 

c = co+ql(a)+€ay2(a)+ .... (30) 
X = a  

The functions y1 and y2 are determined later. 

is at x = - t B .  The boundary conditions are also determined in terms of e. 
Finally, we fix the origin of time t at a = as = -BB, so that at t = 0 the jump 

Making use of Taylor expansions, we obtain 
€0: x, = -$I3 at p =  a, 

xo = a at = -4B, 
to = 0 at p = a = - $ B ;  

el: x1 = 0, u1= 0 at = a, 

t l=O at /3=a=-+B; 
6,: x2 = 0, u2 = - n2H?zc,, B-= cos (oato - $) at /3 = a, 

t 2 = 0  at f l=a=-iB.  
Following C.Y., the procedure was as follows. 
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First, the solution in region I (figure 3) was obtained by solving the differential 
equations (24)-(26) with the above conditions. From this solution the flow in 
region I along QR, defined similarly to that along PQ (cf. equation (29)) as 
01 = &B+sOl(P) + ..., was determined. The flow along QR in region I1 could be 
obtained subsequently from the conditions of conservation of mass and momen- 
tum across a jump. If the quantities in front of the jump are denoted by the 
subscript f, and behind the jump by b, these conditions are as follows: 

( U f  - v,) c; = (Ub - V,, 4, 
( U f  - v,)"? + *cj = (ua - lye; + +g, 

where V ,  is the velocity of propagation of the jump. 
In  the case of weak jumps, it follows that 

uf + 2cf = u b  + 2cb f o ( ( c b  - cf)3]7 

v, = U f  - Ct - #(Cb - C f )  - Q ( C b  - ct)2+ 0 ( ( C b  - ct)3]. 
(31) 

(32) 

Equations (31) and (32), were used to determine the flow along QR in region 11. 
(Note that V ,  is not a new unknown, since V ,  = (dx/dt)  along the jump.) 

The next step was to calculate u, c,  x and t in region 11, using differential equa- 
tions analogous to (24)-(26), the boundary conditions along QS, and knowledge 
of the flow along QR. The solution for region I1 was used to determine the flow 
along RS, from which the flow in region I11 along the jump RS was obtained by 
application of the jump conditions. From the periodicity requirement, the flow 
along RS in region I11 must be a repetition of the flow in region I along PQ. 
In  particular, the distribution of c along PQ, represented by (30), must be the 
same as the distribution of c along RS. This condition yielded differential equa- 
tions for the functions y1 and yz. The solution for y1 provided, to second order in 
e, the flow variables u and c in both region I and region 11, as well as the paths of 
the jumps. The procedure involves a long series of calculations and we have 
indicated, following C.Y., how to start the calculations in region I and have out- 
lined how final results were obtained. 

Presentation of the full-length calculation, would require an undue amount of 
space, and therefore only the results are given. We refer the reader for the details 
to C.Y., where the method is applied to the oscillations of a gas column at 
resonance. 

The present authors found the calculation of the phase of the jump in C.Y. to be 
incorrect, due to inconsistency in the expansion of the frequency, which has been 
mentioned earlier in this section. Therefore we did not follow C.Y. in calculating 
the phase of the jump, but used a method discussed in the next section. 

4. Results 

(reference being made to figure 3) : 
Using the method of the preceding sections, we obtained the following results 

+ W2), (33) 
n(x + p) 

2B 
u1 = 4Eco A sin +(wet - # - Bn) sin 
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where R = ( W - U 0 ) / E ,  

and A =  - 1+- 

In  region 11, 

+ O(C2), 
n(x + 423) 

2B 
ZLII = 4ecO A cos +(wet - $ - in) cos 

L 

+ 2c0 A sin +(mot - $ - in) sin n(x + gB)]  + O(e)2. 2B 

The path of the jump PQ, travelling from left to right, appears to be 

x = - +B + cot + E (cot - B )  sin ($$ + 2.) 

1 AB 
- 2 - sin ( +mo t - +$ - in) cos +oo t + O(e2), 

n 

while the equation for the jump QR, travelling from right to left is 

1 2BA 
+-cos(go,t-+$-+m)sin+~,t +O(e2) .  

n 

The phase difference $ between the jump and the container is determined 
from the condition that at a11 times the total water volume per unit length in the 
x-direction should be Bh,, i.e. 

bB 
hdx = Bh,, 

S--tB 

S-bB 

or, by use of (10) and (1 l), 
4B 

C 2 d X  = B c ~ .  

The integral can be evaluated with the help of (34 )  and (38). To obtain the con- 
tribution of order e, the relation between z and t at the jump is needed only to  
zeroth order. If we consider a time t’ at which the jump travels from the left to 
the right, it follows from (39) to this order that at the jump, 

x = - *B + cot’. 

Therefore we have to use (34) from x = - +B to x = - +B + cot‘. For the remainder 
of the integration interval, i.e. the region in front of the jump, we have to use 
(38 ) ,  with (see figure 3 )  t’+2B/co substituted for t’. Then we obtain, requiring 
the cancellation of terms of order e, 

sin(&$+&) = -BIR/6Aco+O(e). (41) 
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For w = w,, (41) with (35) yields # = - in. This means that when the container 
starts an oscillation cycle (in the counter-clockwise direction) with w = w,, the 
jump is, on its way from x = iB to x = - SB, just passing the centre of the con- 
tainer and is therefore exactly 90' out of phase with the excitation. 

As a check on the expressions for the paths of the jump, we calculated the 
mean speed 

from (39). The result obtained is c,+sQB/n or, by virtue of (35), wB/r as it 
should be. 

We now determine the strength of the hydraulic jump, i.e. the difference 
[q] between the surface elevations behind and in front of the jump, divided by 
h,. From (4), (10) and (11) we infer that 

c = c0( 1 + 7//2h0) + 0(s2 ) .  (42) 

From (42) we obtain, using (34), (35), (38) and (41), for the wave elevations in 
region I and region I1 

Now consider again a time t' at which the jump travels from the left to the right. 
The position of the jump is given by (39), and the strength of the jump follows 
from 

-711 ( - 
= 4As COB (*$ + in). 

Using (41), we obtain 

For a given frequency the strength of the jump is independent of time to second 
order in s. 

[ ~ ] / h o  = 4A~(1- (BQ~/~AC,)~)*+ O(@). (45) 

5. Measurements 
The theoretical results given in the preceding section were verified experi- 

mentally. For this purpose a rectangular container with B = 1-20m, was filled 
with tap water to a level h, = 9 x 10-2m, and oscillated about an axis parallel 
to the Z-axis as in figure 1 and coinciding with the bottom of the container. 
The experimental value of H was therefore equal to h, and hence the second 
term in (36) could be omitted, being negligible with respect to unity. 

Three different kinds of measurements were carried out: 
(i) At an oscillation amplitude 6 = n/90rad., the surface elevation was 

measured at four different values of x, the frequency being 0, = 2.46sec-l. 
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mm mm 
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- - x/Br 0 Z/B= 0,667 r. 

h l  
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- 40 - -40 7 
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FIGURE 4. Surface elevation as a function of wt - q5 for various values of 
x, at w = w,, and 6 = 2'. - , Theory; - - - -, experiment. 

- 30 - 30 - 30 j w  

FIGURE 6. Surface elevation as a function of ut - q5 at x = &B, for vmious values 
of 6 and w. - , Theory; - - - -, experiment. 
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The experimental results are given in figure 4 as broken lines. The corresponding 
values obtained from the theoretical results given in $4 are represented by solid 
lines. 

(ii) At a fixed value of x, the surface elevation 9 was measured for various 
values of the oscillation amplitude, viz. 6 = n/180, n/90, n/60, n/45rad. and for 

0.10 

0.08 

0.06 

a1 

0.04 

0.02 

0 1 I 1 1 I 1 I 1 

0 0.2 0.4 0.6 0.8 1.0 1-2 1.4 

0 / w 0  

F I U ~ E  6. Amplitude of the moment exerted by the fluid on the container 88 a function of 
w/oo for various values of 8. - , Theory (for low values of w/wo, the curve obtained 
from linearized theory is &am). 

w = 0-8900, w = wo, and w = 1 . 1 4 ~ ~  The results are given in figure 5 in broken 
lines and the corresponding theoretical results are represented by solid lines. 

(iii) The moment about 0 exerted by the fluid was measured as a function of 
o for several values of the oscillation amplitude 6. A counter-clockwise moment 
was considered positive. 

The measured moment was subjected to a Fourier analysis 
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We recall in this connexion that o,t - 4 is the phase of the container (since in 
the present analysis w - w 0  = O(e)) ,  so that $n measures the phase difference 
between the nth harmonic in M and the nth harmonic of the container. The 
experimental values of HI, for several values of 6, are given in figure 6 as a function 
of 0. 

18004 X 

oo ' I I I I I I I I I I I I 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 

(0 - wo)/ewo 

FIUURE 7. The phwe of the moment relative to the phase of the container, M a function 
of (o-oo)/€oo. - , Theory; x : 6 = lo; A: 6 = 2'; 0 :  6 = 3"; 0 :  6 = 4'. 

The moment M can also be calculated. Using the results of $4, we obtain 
for the frequency range around w ,  with p as the density of water, 

1 28eh0 A 
n2B 

- - [( - 1 + cos Swot + sin Swot) cos (Aq5 + in) 
+ ( - &wot + $ 7 ~  + sin &+,t - cos &dot) sin (4q5 + &)I + O(e2) (48) 

for 0 < t < n / w ,  and 

128eh0A 
n2B 

[( 1 + COB +wo t - sin $w0 t )  cos (44 + in) 
+ (+wet- $r+ sin &wot + cos +wet) sin (iq5 + &r)] + O(e2) (49) 

for nlw c t < 2 7 ~ 1 ~ .  In  the region of w for conditions far from resonance the 
moment can be obtained from equation (8). Using wt-q5 instead of wt, we get 
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The theoretical values of .&& for w < wo and for w % wo can be obtained from 
(50). These are the linear regions, as investigated by B i d e  (1941). 

For w near wo the value of x. was obtained by expansion of the function given 
in (48) and (49) in a Fourier series of the type (46). For the first coefficient we find 

where use has been made of (12), (35) and (36). For $. we obtain 

I” + O ( 4 .  
B(w - wo)2 

9698- 3B(w - o ~ ) ~  
= -$-arcsin 

Expression (41) for $ can, with the aid of (35) and (36), be reduced to 

The theoretical values for obtained from (52) and (53) are given in figure 7 
as a function of (w - oo)/ewo w (w - w,)/(gS)+, together with the experimental 
values. For w < wo the moment is in phase with the oscillation of the container 
as shown by (50). 

6. Discussion 
Figures 4-7 show a good agreement between theory and experiment. In 

fact, the agreement is better than could be expected, if the following is considered. 
We recall that the theory is a first approximation in terms of e = (SB/rho)* 
(see equation (12)), so that differences of the order of e2 may be expected. A 
representative value of S for the experiments is n/60. Then 6 is as large as 0.5. 
Hence the agreement is, in general, surprisingly good and suggests that the 
coefficients of the terms in e2 are small. 

Part of the discrepancy between theory and experiment is of course due to the 
neglect of viscosity in the theory. In particular, part of the difference between 
the measured phase of moment and the calculated phase, must be attributed to 
boundary-layer effects (cf. Chester (1964) where it is shown for the gas-dynamic 
case how viscosity changes the phase of the shock). 

The results as given in $ 4  are valid for frequencies which do not differ very 
much from the resonance frequency wo. In fact, it follows from consideration of 
the expression (53), for the phase of the hydraulic jump, that solutions including 
a jump exist only for (w - oo)2 < 24gS/B. This inequality can be written as 

A similar result was obtained by Chester for the gas-dynamic case, using a quite 
different method. During the experiments we observed that at values of w well 
beyond wo, the hydraulic jump disappeared, which is in agreement with the above 
result. 

solitary 
wave was observed, which travelled back and forth between the walls of the 

It may be of interest to note that at the disappearance of the jump 
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container. This corresponds with the well-known fact (see Wehausen t Laitone 
1960, $31) that the solitary wave travels at a speed slightly higher than the 
critical speed corresponding to a Froude number of unity. This solitary wave 
cannot be obtained from the present theory, since a higher-order shallow-water 
theory is needed, where in contrast to the first-order approximations (equations 
(5) and (6)) vertical accelerations are taken into account. 

At high frequencies, w 9 wo, a wave pattern represented by a solution of the 
type (8) reappeared. 
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